Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Osteoporosis and Sarcopenia ; : 109-115, 2019.
Article in English | WPRIM | ID: wpr-918655

ABSTRACT

OBJECTIVES@#The purpose of this study is to evaluate the effects of teriparatide (TPTD) on bone mineral density (BMD), bone strength, and bone quality in Akita mouse models of diabetes mellitus.@*METHODS@#Twelve-week-old female Akita mice and control mice (C57/BL/6NCrSlc) were divided into 4 groups: control mice treated with vehicle (n = 7) or TPTD (n = 6); and Akita mice treated with vehicle (n = 6) or TPTD (n = 7). TPTD or vehicle was administered subcutaneously 3 times a week for 8 weeks. Blood glucose, serum sclerostin, total tibial BMD, femoral shaft bone strength, and bone quality using Fourier-transform infrared spectroscopy imaging were evaluated.@*RESULTS@#No significant differences in serum sclerostin levels were evident among these groups after 8 weeks of treatment. TPTD significantly increased BMD in control mice (+12.7%, P = 0.02) and Akita mice (+29.2%, P = 0.001) compared with vehicle. Maximum load and stiffness were significantly higher in Akita mice treated with TPTD than in Akita mice treated with vehicle (+56.6%, P = 0.03 and + 90.5%, P = 0.02, respectively). On Fourier-transform infrared spectroscopy imaging, the mineral/matrix ratio was significantly lower in Akita mice treated with vehicle than in control mice (−12.2%, P = 0.02), and TPTD treatment significantly increased the mineral/matrix ratio (P = 0.003).@*CONCLUSIONS@#TPTD thus improved BMD and bone strength in both control mice and Akita mice, with improvements in the mineral/matrix ratio among Akita mice.

2.
Osteoporosis and Sarcopenia ; : 185-191, 2017.
Article in English | WPRIM | ID: wpr-225115

ABSTRACT

OBJECTIVES: Glucocorticoid (GC) treatment inhibits activation of runt-related transcription factor 2 (Runx2), which is essential for osteoblast differentiation from stem cells. As a result, GC treatment results in bone loss, GC-induced osteoporosis (GIO), elevated fracture risk, and delayed bone healing. Bisphosphonates such as alendronate (ALN) are recommended for treating or preventing GIO, and lowintensity pulsed ultrasound (LIPUS) facilitates fracture healing and maturation of regenerated bone. Combined therapy with ALN and LIPUS may stimulate cancellous bone healing in GIO rats. Here, we examined the effect of ALN and LIPUS on cancellous bone osteotomy repair in the proximal tibia of GIO rats. METHODS: Prednisolone (10 mg/kg body weight/day) was administered for 4 weeks to induce GIO in 6-month-old female Sprague-Dawley rats. Tibial osteotomy was then performed and daily subcutaneous injection of ALN (1-µg/kg body weight) was subsequently administered alone or in combination with LIPUS (20 min/day) for 2 or 4 weeks. RESULTS: ALN significantly increased bone mineral density (BMD) at 2 and 4 weeks, and ALN + LIPUS significantly increased BMD at 4 weeks. Bone union rates were significantly increased after 2 and 4 weeks ALN and ALN + LIPUS treatment. Lastly, ALN and ALN + LIPUS significantly increased the proportion of Runx2 positive cells at 4 weeks. CONCLUSIONS: ALN monotherapy and combined ALN and LUPUS treatment augmented BMD and stimulated cancellous bone repair with increased Runx2 expression at the osteotomy site in GIO rats. However, the combined treatment had no additional effect on cancellous bone healing compared to ALN monotherapy.


Subject(s)
Animals , Female , Humans , Infant , Rats , Alendronate , Bone Density , Bone Diseases, Metabolic , Diphosphonates , Fracture Healing , Injections, Subcutaneous , Osteoblasts , Osteoporosis , Osteotomy , Prednisolone , Rats, Sprague-Dawley , Stem Cells , Tibia , Transcription Factors , Ultrasonic Waves
SELECTION OF CITATIONS
SEARCH DETAIL